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Project Overview

Timeline: Barriers:
» Total cost of ownership:
Oct. 2019 June 2023 » High purchase price and range of charge and
. 2 . payload
70% » Performance Validation:

> Fleets need better
performance data on Battery Electric Trucks,
(BEVs), in real-world usage to validate the

Funding. reliability of the vehicles
Total Project Cost: $4,869,889 » Infrastructure Needs:
> DOE funds: $3,799,536 » Infrastructure cost and planning complications

> Industrial cost share: $1,070,353
> FY2020 funding: $468,245
» FY2021 funding: $3,279,285
> FY2022 funding: $1,109,292

partners VOLVO &=
» University of Minnesota

> HEB Companies UNIVERSITY OF MINNESOTA MLJR g
> Murphy LOgiStiCS M Driven to Discover- I 5',9‘3‘5%"




Relevance

Impact:

Cloud Server I e —
p ./ customer data

Decrease the cost and time required for on-route | $ 1 .
charging, recommend energy efficient routing, o encle gata (wowey) 9

and provide eco-driving recommendations to @_J <« .

the operator.

destination charging charging warehouse

Objective:

Research, develop, and demonstrate life cycle cost-effective Class 8 battery electric vehicles equipped with
an intelligent Energy Management System (i-EMS) capable of commercial operations of >250 miles per day
as well as increased efficiency and productivity when compared to baseline 2019 Mack and 2015-2020

\olvo heavy duty battery electric vehicle fleet performance.



Milestones

BP Milestone Type Description Status
. : . Baselin IS cr for all vehicl nd representativ
Baseline database is created Technical |-oocme datat.)ase s created .0 all vehicle data and representative duty Completed
cycles are defined for the project
H - e - - - - o
. e . . Battery Electric Truck specification is ordered for build and delivery. Verified
T |Battery Electric Truck specification Technical y P . . °ry Completed
k=l to Achieve Performance Measures, i.e., proper battery configuration.
L.
[¢B)
?; Initial battery electric truck simulation model Technical |Initial, physics based battery electric truck model is complete Completed
=
C:ns Begin development of machine learning algorithm Technical |Initial data and discussion allows for development of core algorithm to begin. |Completed
. e - . . Published verification plan and project requirement documents outlinin
Published verification plan and project requirement document |Go/No-Go . P . P J a g Completed
demonstration and evaluation plan is completed
Beta algorithms meet performance requirements. Technical Beta algorithms meet p(?rfor_manc?e reqmrem _enFs to enable |n|t|at|_ng of Completed
software development, i.e., identify and minimize on-route charging cost.
N
g Completed energy-efficient routing and driving algorithms Technical |Completed energy-efficient routing and driving algorithms Completed
=
s . - - -
O |complete driver interface Technical C(_)mplet_e driver interface app to install on test vehicles that communicates Completed
o with vehicle and cloud server
(@)
o |. . I-EMS performance is verified with I truck operation per I
S |i-EMS performance Technical . _S_pe ormance is verified with actual truck operation per duty cycle In-Process
m definition
. . Define n ry on-route charging locations for each customer site t
On-route charging locations Go/No Go| "¢ .ecessayo gu € charg .g qca Ons TOr each CUSIOmET SIEe 10 In-Process
accomplish the 250-mile range objective




Approach

Understand fleet partners’ baseline operations and establish project duty cycles

Combine physics-based truck model, battery information, utility demand charges and database parameters as
inputs to a machine learning algorithm that will predict energy use, operational energy cost, and battery
performance

Implement i-EMS on 2 Battery Electric \ehicles, (BEVS), using a low-distraction screen to display charging
and routing recommendations to operators

Install vehicle charging locations at fleet partners
Demonstrate i-EMS in daily operations with fleet partners covering both cold and hot-weather conditions

Schematic describing the flow of inputs and vehicle data

Inputs Vehicle Cloud Server Driver-Vehicle Interface
Charger Locations | | FEMS Algorithm = Range Prediction
Route Profile L:ﬂw Dg—’ flde;: ‘ﬁehid& Route End SOC
+
Vehicle Mass oPs |k oredicton + Roote On-Route Charging
. Rate + Duration
(Customer Inputs) - g —— Prediction
J1939 Diagnostics E T Energy Effcient
CANBus |B Routing
(Exogeneous Inputs) ? ' Eco-Driving
Map Information Powertain Vehicle Database Recommendations
Elevation Controller Raw and processed (HEMS Qutputs)
vehicle parameters
Amb, Temperature s | +exogenous data

Traffic Density

Database
Low Order Models
Energy Management
Battery Health

%

- charge scheduling
- charging rate

- ambient temp
-GPS
- vehicle mass

- charge duration l /I\ - powertrain parameters

Exogenous Parameters:
Route, Traffic, Electricity
Cost, etc..

solar array

v

destination charging

charging 2nd-life

warehouse
batteries




Technical Accomplishments and Progress
Overview

 Developed Elements of Intelligent Energy Management Strategy:
 Task 2.1: Low-order physics model for fast energy estimation

 Task 2.2: Initial machine learning algorithm for range and minimum charging
prediction

 Task 2.3: Eco-routing algorithm for use on filtered road network graph
» Task 2.4-2.5: Charger placement optimization for individual trucks and routes
 Task 2.6: Driver-vehicle interface (DVI) to relay iI-EMS recommendations

Cloud Server €
customer data

\L Tvehicle data (two-way)

destination charging charging warehouse



BEV Specifications

* Truck #1 (NME-6)
« GEN2 Batteries

Description NME-6 (Chassis# 604596) NME-8
- (Phase 1) - (Phase 2) ~

INSTRUMENT CLUSTER GENERATION - IC-GEN1
CHARGING POWER CHP150 CHP250
ENERGY STORAGE SYSTEM CAPACITY ESS265K ESS565K
ONBOARD CHARGER ONCHAR ONCHAR2
AIR COMPRESSOR DRIVING MOTOR ACDM-AIC ACDM-WC
COOLING ENERGY STORAGE SYSTEM CESS-P CESS-A
VEHICLE OVERSPEED,ALL COND,LOG - VOSAC70
ELECTRICAL SYSTEM ELS-BP ELS-BP+
PEDALRSLSETTING PRSL93 UPRSL

* Truck #1 was delivered to Minnesota
. TTUCk #2 (N M E-8) J December 2021

. . » Truck #2 is scheduled for delivery to
GENS Batteries San Antonio June 2022



Technical Accomplishments and Progress
Task 2.1: Vehicle Physics Model

» Road Load Equation

 |nstantaneous Power

» Acceleration

» Ascent
Aerodynamic drag
Rolling resistance
Tire inertia
Braking friction losses

* Low-Order Battery Model

e Current Delivered to Load
» Open-circuit voltage
* Internal resistance
* Power demand
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Technical Accomplishments and Progress

Task 2.2: Range and Charging Prediction .

* Recurrent Neural Networks (RNNSs)

* Predict energy needed to complete route
* Provide statistical confidence measures

Hidden layers

g ﬂ”l (x)
Cloud N oA (x) 0
. O = e
Tuned Vehicle “[ SOC Required o ()
Server for Two-Way Model Jf edl:‘_‘;’\“ 1 (X)
Vehicle Communication NS, ap (%)
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Ra.ng.e Charging
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Probability Density
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[1] Eagon, Matthew J., Daniel K. Kindem, Harish Panneer Selvam, and William F. Northrop. “Neural Network-Based Electric Vehicle

Range Prediction for Smart Charging Optimization.” Journal of Dynamic Systems, Measurement, and Control 144, no. 1 (January 1,
2022): 011110. https://doi.org/10.1115/1.4053306.

S50C required (%)
s B &5 3 3

SOC (%)

B 5 3 =

Charging Recommended (%)

]

Predicted Range (mi)
5 5 3

5 5 2R R

==
[T

— Predicted upper bound

— Predicted lower bound
—— Ground Truth
Upper and lower bounds
0 5000 10000 15000 20000 25000 30000 35000
Time (s)
= Real time SOC

—— Predicted Mean

—— Predicted Mean + one std
—— Predicted Mean - one std
Predicted Mean + two std
Predicted Mean - two std
Mean and variance \%’“E\

0 5000 10000 15000 20000 25000 30000 35000
Time (s)
Charging required (if any)
0 5000 10000 15000 20000 25000 30000 35000 40000
Time (s)

=

Remaining range

0 5000 10000 15000 20000 25000 30000
Time (s)

35000 40000

Energy needed to finish route



Technical Accomplishments and Progress

Task 2.2: Mass Prediction

 Three methods: online mass detection from driving data

« Machine Learning: Deep Neural Network (DNN)

« Statistical: Gaussian Belief Propagation (GBP)

* Model-Based: Linear regression — compare expected and actual energy use

Predicted Mass [lbs/Ibs]

- @ ‘ I
S | g
GBP E| oot
* Not depicted ] 1L ®c r
i smoothness factor

L

Adjust Mass

-

Vehicle Model == E, .tn.a1 — Emodel —]

s Mass Prediction

T

Driving Data

“ Model-based

Datapoint 0.0 0.2 0.4 0.6 0.8
Mass [1bs/Ibs]

[2] Eagon, Matthew, Setayesh Fakhimi, Adam Pernsteiner, and William Northrop. “Mass Detection for Heavy-Duty Vehicles using
Gaussian Belief Propagation.” 2022 Intelligent Vehicles Symposium (IV) (June 2022). Accepted for publication.

1.0



[3] Li, Yan, Pratik Kotwal, Pengyue Wang, Yiqun Xie, Shashi Shekhar, and William Northrop. 2020. Physics- guided Energy-efficient Path
Selection Using On-board Diagnostics Data. ACM Trans. Data Sci. 1, 1, Article 1 (January 2020), 29 pages. https://doi.org/10.1145/3406596

Technical Accomplishments and Progress

Task 2.3: Eco-Routing Algorlthm p——— T ) |
» Map-matching from GPS data /« \ 3 Al
 Road network graph construction w:‘r
 Match driving data to network graph | ST ] 71
* Energy Estimation Methods B e e o T y S
 Energy Estimation Lookup Table b - |
 Energy estimation for similar road segment groups B '
e Transfer Learning Energy Estimation MAPE*
* ConSTGAT (State-of-the-art for time travel estimation) 1001 e —

—— LookupTable(NREL)
—&— PiNN

 Physics-informed Deep Neural Network (PINN)
* Energy and time estimation for individual paths

MAPE* (%)

« See next page for architecture ®
 Routing Algorithm N
« A* pathfinding algorithm
 Heuristic based on [3] ol _ _

Length of Path (# segments)

* Mean Absolute Percentage Error




Technical Accomplishments and Progress

Task 2.3: Eco-Routing Algorithm

T

Concat

* DNN Architecture
» Energy estimation Atiributes e

Input Data -
. Road type 26 dimensions 0.057, 0,066, -4.954, (048, 0059,

« Example Route - Speedlimit o o o =
. urning angle :

. Path finding \ + Elevation change -
© OBDdata

v

«  Day of week _.

o -, o N l , e, -~
Sub-path 1 Sub-path 3 Sub-path 4 Sub-path 5

- .88 Self Anention -8
N Multiple Fully-connected Layers -a e

1

f]lllpllt ‘.':l."iUﬂlZ‘I'lI Segment Sl,-i":nm:l ‘.'.u."l.',ll1l:‘I'|I Segmient
Energy 1 Energy 2 Energy 3 Energy 4 Encrgy 5

L&

Number of Segment T
Length(m) 39324.087999999996 37434.512 38967.602 R
Fuel(l) 14.446175426244736  18.433458421379328 15.14326499029994 !

Timefs) 2062.8963108062744  2744.7623007357647  1708.2627217806876



Technical Accomplishments and Progress

Task 2.4-2.5: Charger Placement Algorithm ™

* Mixed Integer Programming

« Optimize Placement Based Upon Expected Demand

* Also Tested: Genetic Algorithm, K-Means Clustering
* Incorporates Model-Based Driving Simulation

* \ehicle Model
» Drives along routes

» Determines hotspots for charging needs
» Charger Model
» Charge on-route vehicles

» Cost Model
» Labor
» Charger (Materials)

* Electricity
* Increases Number of Chargers Until...
* Minimum Portion of Routes Are Feasible
« Maximum Budget is Reached
 Other constraints also possible

[4] Eagon, Matthew, Setayesh Fakhimi, George Lyu, Brian Lin, Audrey Yang, and William Northrop.
“Model-Based Framework to Optimize Charger Station Deployment for Battery Electric Vehicles.”
2022 Intelligent Vehicles Symposium (IV) (June 2022). Accepted for publication.
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Technical Accomplishments and Progress
Task 2.4-2.5: Charger Placement Algorithm

« Example results ® tuee o o

= path = path ) St;ieog’rvv’;”'r‘)} MASSAC TS
- . ’ LOUISIANATESS - k -‘/ 7 - i 7% 1
« Max chargers-per-station: 10 Faz| TR Wy ~ oo
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- New
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« Budget: unconstrained @ SANO b BOHA
San Antonio to New Orleans Boston to Harrisburg
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[4] Eagon, Matthew, Setayesh Fakhimi, George Lyu, Brian Lin, Audrey Yang, and William Northrop. “Model-Based Framework to Optimize
Charger Station Deployment for Battery Electric Vehicles.” 2022 Intelligent Vehicles Symposium (1V) (June 2022). Accepted for publication.
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Technical Accomplishments and Progress &=
Task 2.6: Driver-Vehicle Interface (DVI)

« Ul Design Complete, Ready for Install

Main Screen: Routing + Energy Info Routing Screen: Choose or Build

R t Eco Route (Green) Screen to display info while charging Add a waypoint Move the highlighted
OU e waypointup

203 W @@
ROUTE  LANGUAGE _ ., ... List of Destinations: Selected Places: Selected Route Map:
' Murphy Logistics - Eagan Distribution Center RAhy Warehoes Company
Murphy Logistics - Fridley Distribution Center Factory Hardwood LLC
} 5 Remove the
Boor Murphy Logistics - Hampden Distribution Center Shutterfl 3 5
4 sl highlighted
Murphy Logistics - New Hope Distribution Center = waypoint
Minheapolis
-, Murphy Logistics - Shakopee Distribution Center
Move the
Murphy Logistics - St. Paul Distribution Center - hlghllghted
Penguin Insulation =01 waypoint
RR Donnelley dO\Nn
RRD Commercial Print - Chanhassen T,
Tap mic icon to speak Savers Bloominglo Delete .ALL
Shutterfly waypoints
This area is reserved for displaying Staging Concepts
2 messages to driver ...
> Sun Chemical Corporation
SWM/ Conwed Plastics LLC C : Savethe
Target Distribution Warehouse Mot P ocal : created route
Fort ) Target Mixing Center
2633 Googhy - MEI @R FB022 Google

Google Route (Blue) Display messages to driver ~ Transcribe driver feedback (voice msg) Zoom-in map of the selected waypointlocation




Collaboration and Coordination

Key Contributions

\Volvo Principle Investigator, Contract Management, Project
Management and engineering resources for truck operation,
data collection and route simulation

University of Minnesota \ehicle to cloud data management, algorithm development,
data analytics, secondary driver display

Gilbarco Electric charging support, installation of chargers
HEB Companies Fleet testing, operational data, driver feedback

Murphy Logistics Fleet testing, operational data, driver feedback



Remaining Challenges and Barriers

 Technical Challenges

* In-house model validation with results from OEM models/driving data
» Determining the effects of temperature on battery performance
 Output power limiting behavior for charging stations

Integrate models into driver-vehicle interface

Speed up eco-routing execution time

Quantify effects of traffic on eco-routing performance
Develop logic for re-routing decisions

 Other Barriers
 Delays in vehicle production - delivery = testing - validation
 Defining accurate operational cost parameters
* |dentifying best routes for use in long-haul dominated trucking fleets



Proposed Future Research

« FY22: Testing and Operational Cost Analysis
» Develop reinforcement learning agent for high-level decision making (e.g. rerouting to charge)
 Finalize charger placement solution for vehicle fleets
» Deploy algorithms on driver-vehicle interface for testing and validation
 Tailor developed models to initial testing data
» Develop and investigate correctness of operational cost model
 Evaluate most effective EV use-case for fleet partners
» Gather feedback from vehicle operators on driver-vehicle interface

« FY23: Extended Testing and Validation

» Extend test routes with the addition of an on-route charging station
« Demonstrate 250+ miles of daily driving
» Determine final accuracy of developed models
 Predictions: Energy usage, mass, remaining range, minimum charge needed,
» Evaluate impact of extreme ambient conditions (i.e. TX summer, MN winter) on performance
 Validate effectiveness of eco-routing algorithm, i-EMS energy and cost savings

Any proposed future work is subject to change based on funding levels




Project Summary

« The goals of this project are aligned to the key barriers of total cost of ownership, performance
validation and infrastructure needs as pertaining to the operation of a Heavy-Duty BEV.

 In this reporting period analysis has been performed on the baseline data to develop the I-EMS

technologies that will be used to recommend energy efficient routing and provide eco-driving
recommendations to the operator.

 Inthis reporting period two BEV were delivered to the fleet partners Murphy and HEB, and
feedbacks from the driver are positive:

* “The drivability is very good; the high torque is a nice benefit”

* “Normally it’s quiet, the interior noise is a lot less than a conventional, you will still hear the
tires, the compressors”

* “I think the drivers will like the vehicles, and find it hard to go back to a conventional”



